ME 201 (AUG) 3:0 Fluid Mechanics
Fluid as a continuum, mechanics of viscosity, momentum and energy theorems and their applications, compressible flows, kinematics, vorticity, Kelvin's and Helmholtz's theorems, Euler's equation and integration, potential flows, KuttaJoukowsky theorem, NavierStokes equations, boundary layer concept, introduction to turbulence, pipe flows.
J H ARAKERI and RAGHURAM GOVARDHAN
Kundu, P.K., and Cohen, I.M., Fluid Mechanics, Elsevier, 2005.
White, F.M., Fluid Mechanics, McGraw Hill, 1986.
Vennard, J.K., and Street, R.L., Elementary Fluid Mechanics, John Wiley, Sixth Edn. 1982.

ME 228 (AUG) 3:0 Materials and Structure Property Correlations
Atomic structure of materials, atomic bonding, crystal structure point, line and areal defects in crystal structure, dislocation concepts of plastic deformation, critical resolved shear stress, interactions between dislocations and work hardening, fracturemicroscopic descriptions, strengthening. Mechanisms of metals, processing maps, concepts of biomaterials. Natural and synthetics, fracture and fatigue of biomaterials.
SATISH VASU KAILAS, M S BOBJI and NAMRATA GUNDIAH
Raghavan, V., Materials Science and Engineers, Prentice Hall, 1979.
Davidge, R.W., Mechanical Behaviour of Ceramics, Cambridge University Press, 1986.
ReedHill, R.E. and Abbaschian, R., Physical Metallurgy Principles, PWSKent Publishing Company, 1992.
Ratner B.D., Hoffman ,A.S., Schoen F. J., Lemons, J. E., Biomaterials Science An introduction to Materials in Medicine, Academic Press 1996.

ME 237 (AUG/JAN) 3:0 Mechanics of Microsystems
An overview of microsystems and microfabrication, mechanics issues relevant to microsystems, scaling laws, materials properties and their role in microsystems, lumped modeling of microsystems. Coupledsimulations of multienergy domain systems including electrostaticsmechanical, electrothermal, thermomechanical, piezoelectricmechanical, fluidic issues such as squeezedfilm effects. Application of numerical techniques such as finite element and boundary element methods in solving steadystate and transient regimes. Case studies of selected microsystems devices and systems. Introduction to biomechanics at the small sizes.
RUDRA PRATAP and G K ANANTHASURESH
Prerequisite: Multivariable calculus and numerical analysis. No prior background in microsystems or mechanics is assumed.
Senturia, S.D., Microsystem Design, Kluwer Academic Publishers, 2000.

ME 238 (AUG) 3:0 Special Topics in Combustion
Review of combustion fundamentals – conservation equations, chemical kinetics, laminar premixed and diffusion flames, pollutant formation; combustion instability  basic concepts and mechanisms, acousticvortexflame interactions, combustion instability and control, instability issues in industrial gas turbines and aeroengines; spray combustion, single component and multicomponent droplet combustion; modeling of turbulent reacting flows, RANS and LES methods; laser diagnostic methods applied to reacting flows  PLIF, PIV, Raman, Rayleigh, LII, measurement of temperature, velocity, species and soot concentrations.
R V RAVIKRISHNA and SAPTARSHI BASU
C. K. Law, Combustion Physics, Cambridge University Press, 2010.
S. R. Turns, An Introduction to Combustion, Concepts and Applications, McGraw Hill International, Third Edition, 2012.
N. Peters, Turbulent Combustion, Cambridge University Press, 2006.
Katharina KohseHöinghaus and Jay Jeffries, Applied Combustion Diagnostics, Taylor and Francis, 2002.

ME 239 (JAN) 3:0 Modelling and Simulation of Dynamic Systems
Axioms of mathematical modelling, approximations and idealizations, fundamental balance laws, governing equations, statespace description, solution of ODEs, numerical methods for solutions of ODEs, explicit and implicit methods, error and accuracy, stability analysis of numerical solvers, stiff systems and stability, frequency domain in analysis of linear systems, FFT and power spectra, nonlinear systems, maps, bifurcations and chaos.
RUDRA PRATAP
Hirsh, M., and Smale, S., Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, 1974.
Farlow S.J., Partial Differential Equations for Scientists and Engineers, Dover Publications Inc., 1993.
Pratap, R., Getting Started with MATLAB 7, Oxford University Press, 2006.

ME 240 (AUG) 3:0 Dynamics and Control of Mechanical Systems
Representation of translation and rotation of rigid bodies, degrees of freedom and generalised coordinates, motion of a rigid body and multibody systems, Lagrangian and equations of motion, small vibrations, computer generation and solution of equations of motion, review of feedback control, state space method, control system design and computer simulation.
RUDRA PRATAP and A GHOSAL
Greenwood, D. T. Principles of Dynamics, 2nd Ed. Prentice Hall, 1988.
Haug, E.J., Computer Aided Kinematics and Dynamics of Mechanical Systems, Vol. 1, Allyn and Bacon, 1989.
Franklin, G. F. Powell, J. D., and Abbas EmamiNaeini, Feedback Control of Dynamic Systems, Addison Wesley, 1987.

ME 241 (AUG) 2:1 Experimental Engineering
Introduction to modeling, introduction to electronics, data acquisition and analysis, fluid velocity, stress, temperature measurement technique, experiments using photoelasticity, strain gauges, hotwire anemometry, accelerometer, term paper project.
S BASU and PRAMOD KUMAR
Pre requisites: ME 201 and ME 242
Doeblin, E.O., Measurement Systems: Application and design, McGraw Hill, 1990.
Horowitz, P., and Hill, W., The art of electronics, Cambridge University Press, 1990.
Goldstein, R.J., Fluid mechanics measurements, Hemisphere Publishing Company, 1983

ME 242 (AUG) 3:0 Solid Mechanics
Analysis of stress, Analysis of strain, stressstrain relations, twodimensional elasticity problems, Airy stress functions in rectangular and polar coordinates, axisymmetric problems, energy methods, St. Venant torsion, elastic wave propagation, elastic instability and thermal stresses.
C S JOG and K R Y SIMHA
Fung, Y. C. ,Foundations of Solid Mechanics, Prentice Hall.
Srinath. L. S., Advanced Mechanics of Solids, Tata McGraw Hill.
Sokolnikoff, I. S., Mathematical Theory of Elasticity, Prentice Hall.

ME 243 (AUG) 3:0 Continuum Mechanics
Introduction to vectors and tensors, finite strain and deformationEulerian and Lagrangian formulations, relative deformation gradient, rate of deformation and spin tensors, compatibility conditions, Cauchy's stress principle, stress tensor, conservation laws for mass, linear and angular momentum, and energy; entropy and the second law, constitutive laws for solids and fluids, principle of material frame indifference, discussion of isotropy, linearized elasticity, fluid mechanics.
C S JOG
Malvern, L. E. Introduction to the Mechanics of a continuous medium, Prentice Hall, 1969
Gurtin, M., An Introduction to Continuum Mechanics, Academic Press, 1981
Hunter, S. C., Mechanics of Continuous Media, Ellis Horwood, 1983.

ME 246 (JAN) 3:0 Introduction to Robotics
Robot manipulators: representation of translation, rotation, links and joints, direct and inverse kinematics and workspace of serial and parallel manipulators, dynamic equations of motion, position and force control and simulation. Term paper.
A GHOSAL
Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford University Press, 2006. Notes and recent research paper.

ME 248 (AUG) 3:0 Industrial Noise Control
Nature of air borne and structureborne sound; source path receiver concept; various mechanisms of the generation of radiation of sound; propagation of sound; noise reduction by sound absorption or dissipation, isolation and damping of structure borne sound; general methods of noise control; applications to specific machines; principles of flow acoustics and application thereof to I.C. engines, fans and compressors.
M L MUNJAL
Bies, D.A., and Hanson, C.H., Engineering Noise Control, Third Edn, Spon Press, London, 2003.
Irwin, J. D., and Graf E. R., Industrial Noise and Vibration Control, Prentice Hall, Englewood Cliffs, 1979.
Munjal, M. L., Acoustics of Ducts and Mufflers, Wiley Interscience, NY, 1987.

ME 249 (JAN) 3:0 Fundamentals of Acoustics
Fundamentals of vibration, vibrations of continuous systems (strings, rods, beams and membranes), acooustic wave equation, one dimensional wave equation and solutions. Kirchhoff Helmholtz Integral Equation (exterior and interior). Neumann and Dirichlet Green Functions. Exterior sound fields: Introduction to spherical coordinates. Exterior sound fields of simple sources in spherical coordinates using KHIE. Scattering of a plane wave from a rigid sphere. KHIE to Rayleigh Integral. Piston in a baffle. Near field and far field, directivity of exterior sources. Interior sound fields: modeshapes and resonances of a rectangular box and a closed cylinder. Green function using modes. Interior response using the forced KHIE. Decibels, Aweighting, octave bands. The Sommerfeld radiation condition. Solution to the wave equation with initial and boundary conditions using Integral Transforms. Lumped parameter modeling of acoustic systems.
V R SONTI
L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, Fundamentals of Acoustics, John Wiley, 1982
Earl Williams, Fourier Acoustics.

ME 250 (AUG) 3:0 Structural Acoustics
Crighton's classical problem of a forced fluidloaded infinite plate. Complex variables and integrations using branch cuts. Asymptotic methods. Structural acoustic interaction in infinite flexible waveguides. Sound structure interaction in a rectangular box with a flexible wall. Sound radiation from an infinite flat plate. Coincidence and wavenumber spectra, wave impedance. Sound radiation from a finite rectangular panel set in an infinite baffle: corner and edge mode radiators, modal radiation efficiency and modal average radiation efficiency. Interior coupled sound fields in infinite flexible cylindrical shells,
V R SONTI
Prerequisite: Consent of Instructor
Miguel C. Junger and David Feit, Sound, Structures and their Interaction, MIT Press, 1986.
Frank J. Fahy, Sound and Structural Vibration, Academic Press, 1985.
L. Cremer, M. Heckl and E.E. Ungar, StructureBorne Sound, SpringerVerlag, 1987.

ME 251 (JAN) 3:0 Biomechanics
Bone and cartilage, joint contact analysis, structure and composition of biological tissues. Continuum mechanics, constitutive equations, nonlinear elasticity, rubber elasticity, arterial mechanics. Introduction to cell mechanics.
Namrata Gundiah
Humphrey, J.D., Cardiovascular Solid Mechanics, SpringerVerlag, 2002.
Fung, Y.C., Biomechanics, SpringerVerlag, 1990.
Holzapfel, G. A., Nonlinear Solid Mechanics, Wiley, 2000.

ME 252 (AUG) 3:0 Mechanisms
Review of kinematic analysis of simple mechanisms, analysis of complex mechanisms, Analysis by algebraic method, force and dynamic motion analysis, structural synthesis, dimensional synthesis of fourbar to coordinate input and output displacements, coupler curves and their applications in mechanism design, Curvature theory in plane kinematics, Synthesis for rigid body guidance, Introduction to spatial linkages.
DIBAKAR SEN
Ghosh, A. and Mallik, A.K, Theory of Mechanisms and Machines, EastWest Press.
Soni, A. H., Mechanism Synthesis and Analysis, McGrawHill.

ME 253 (JAN) 3:0 Vibrations of Plates and Shells
Shell coordinates, infinitesimal distances in curved shells, equations of motion for general shell structures using Hamilton’s principle. Specialization to commonly occurring geometries, modeshapes and resonances of flat plates, rings, cylindrical shells and spherical shells. RayleighRitz and Galerkin methods for finding approximate modeshapes. Forced response: response to various types of loads (point forces, moments, moving loads), transient and harmonic loads. Combination of structures using receptance.
V R SONTI
Prerequisite: a full course in lumped system vibrations
Werner Soedel,Vibrations of plates and shells,
S.S. Rao Vibrations of continuous systems,

ME 255 (AUG) 3:0 Principles of Tribology
Surfaces, theories of friction and wear; friction and wear considerations in design; viscosity, hydrodynamic lubrication, Reynolds equation, coupling of elastic and thermal equations with Reynolds equation, elastohydrodynamic lubrication; mechanics of rolling motion, hydrostatic lubrication, lubricants; tribometry, selection of tribological solutions.
M S BOBJI
Halling, J. (Ed), Principles of Tribology, Macmillan, 1975.
Seireg, A. A. Friction and Lubrication in Mechanical Design, Marcel Dekker, 1998.
Comeron, A., Principles of Lubrication, Longman, 1966.

ME 256 (JAN) 3:0 Variational Methods and Structural Optimization
Calculus of variations: functionals, normed vector spaces, Gateaux variation, Frechet differential, necessary conditions for an extremum, EulerLagrange multiplier theorem, second variations and sufficient conditions. Weak form of differential equations, application of EulerLagrange equations for the analytical solution of size optimization problems of bars and beams, topology optimization of trusses and beams applied to stiff structures and compliant mechanisms. Material interpolation methods in design parameterization for topology optimization, optimization formulations for structures and compliant mechanisms involving multiple energy domains and performance criteria. Essential background for KarushKuhnTucker conditions for multivariable optimization, numerical optimization algorithms and computer programs for practical implementation of size, shape and topology optimization problems.
G K Ananthasuresh
Smith, D.R., Variational Methods in Optimization, Dover Publication, 1998.
Haftka, R.T., and Gurdal, Z., Elements of Structural Optimization, Kluwer Academic Publishers, 1992.
Bendsoe, M.P., and Sigmund, O., Topology Optimization: Theory, Methods and Applications, Springer, 2003.




ME 257 (JAN) 3:0 Finite Element Methods
Linear finite elements procedures in solid mechanics, convergence, isoparametric mapping and numerical Integration. Application of finite element method to Poisson equation, calculus of variations, weighted residual methods, introduction of constraint equations by Lagrange multipliers and penalty method, solution of linear algebraic equations, application of finite element method to linear elasto dynamics, solution of eigenvalue problems, mode superposition and direct time integration algorithms, finite element programming.
R NARASIMHAN
Cook R. D., Malkus, D. S., and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rd Edition, John Wiley, 1989.
Bathe, K. J., Finite Element Procedures, Prentice Hall of India, 1982.

ME 258 (JAN) 3:0 Acoustics of Ducts and Mufflers
Acoustics of moving media; duct acoustics; analysis and synthesis of one dimensional acoustic filters; the rational synthesis of one dimensional acoustic filters; the exhaust process of reciprocating I.C. engines; analysis of exhaust mufflers, finite wave analysis of exhaust systems, aeroacoustic characterization of engine sources; design of exhaust mufflers.
M L MUNJAL
Munjal, M. L., Acoustics of Ducts and Mufflers, WileyInterscience, NY, 1987.
Goldstein M. F., Aeroacoustics, McGraw Hill, 1976.

ME 259 (AUG) 3:0 Nonlinear Finite Element Methods
Fundamentals of finite deformation mechanicskinematics; stress measures; balance laws, objectivity principle. NewtonRaphson procedure. Finite element formulation for plasticity and nonlinear elasticity. Stress update algorithms for plasticity. Finite element procedures for dynamic analysis; Explicit and implicit time integration. Finite element modelling of contact problems – Slideline methods and penalty approach; Adaptive finite element analysis – automatic mesh generation; error estimation, choice of new mesh, transfer of state variables. Finite element programming.
R NARASIMHAN
Prerequisite: ME 257 or equivalent
K. J. Bathe, Finite Element Procedures, Prentice Hall of India, New Delhi 1997
O. C. Zienkiewicz and R. L. Taylor, The Finite Element Methods, Vols. I and II, McGraw Hill, 1991
T. Belytshko, W.K. Liu and B. Moran, Nonliner Finite Elements for Continua and Structures, Wiley, 2000.

ME 260 (AUG) 3:0 Topology Optimization
Hierarchy in structural optimization: topology, shape, and size. Michelle continua and truss/frame topology optimization. Design parameterization and material interpolation: ground structure method, homogenizationbased method, density distribution, levelset methods, peak function methods, phasefield methods. Numerical methods for topology optimization: optimality criteria methods, convex linearization and method of moving asymptotes, dual algorithms, numerical issues in the implementation of topology optimization algorithms, applications to multiphysics problems, compliant mechanisms and material microstructure design. Manufacturing constraints, other advanced topics.
G K Ananthasuresh
Prerequisite: ME 256. Background in finite element analysis is preferred.
Bendsoe, M.P., and Sigmund, O., Topology Optimization: Theory, Methods, and Applications, Springer, 2003.
Contemporary literature.

ME 261 (AUG) 3:0 Engineering Mathematics
Vector and tensor algebra: Sets, groups, rings and fields, vector spaces, basis, inner products, linear transformations, spectral decomposition, tensor algebra, similarity transformations, singular value decomposition, QR and LU decomposition of matrices, vector and tensor calculus, system of linear equations (Krylov solvers, GaussSeidel), curvilinear coordinate transformations.
Ordinary and partial differential equations: Characterization of ODEs and PDEs, methods of solution, general solutions of linear ODEs, special ODEs, EulerCauchy, Bessel’s and Legendre’s equations, SturmLiouville theory, critical points and their stability.
Complex analysis: Analytic functions, CauchyRiemann conditions and conformal mapping. Special series and transforms: Laplace and Fourier transforms, Fourier series, FFT algorithms, wavelet transforms.
G TOMAR, R SHUKLA and V R SONTI
Kryeyzig E, Advanced Engineering Mathematics, 9th Ed., Wiley 2006.
M.D. Greenberg, Advanced Engineering Mathematics, 2nd Ed., Pearson, 1998. F. B. Hildebrand, Methods of Applied Mathematics, Prentice Hall.
Bender and Orszag, Advanced Mathematical Methods for Scientists and Engineers, Springer.

ME 271 (AUG) 3:0 Thermodynamics
Concepts of thermodynamics, zeroth law, first law, properties of pure substances and mixtures, first order phase transitions, thermophysical properties, energy storage; second law; energy analysis of process and cycle; calculation of entropy and entropy diagrams; availability analysis, chemical equilibrium, nonequillibrium thermodynamics, multiphasemulti component systems, transport properties; third law.
P DUTTA, R V RAVIKRISHNA and PRAMOD KUMAR
Van Wylen, G. J., and Sonntag, R.E., Fundamentals of Classical Thermodynamics, Willey.
Work, K. Advanced Thermodynamics for Engineers, McGraw Hill, 1995.

ME 272 (JAN) 3:0 Thermal Management of Electronics
Structures of heat in electronic systems, review of heat transfer mechanisms with reference to electronic systems: foot prints, spreading resistance, design of fins, convection and radiation from electronic modules, jet impingement cooling, active cooling systems – adsorption, thermoelectric, phase change: current state of the art and future projections of thermal needs in electronics.
P Dutta
Thermal Management of Electronic Systems, Vol. 14, ASME Press.
Krauss, A.D., and Cohen, A.B., Thermal Management of Electronics, Hemisphere.
ASME Trans. Journal of Electronic Packaging, ASME Press.
IEEE Trans. on Components and Packaging Technologies.

ME 273 (JAN) 3:0 Solid and Fluid Phenomena at Small Scales
Intermolecular forces, surfaces, defects. Size dependent strength, micro  mechanics of interfaces and thin films. Solvation forces, double layer forces, effect of physicochemical forces on fluid flow at micronscales. Slip boundary condition, friction and nano tribology.
Nanoindentation, atomic force microscopy, microPIV and other characterizing techniques. MEMS, micro fluidics, microscopic heat pipes and other applications.
M S Bobji and R N Govardhan
Israelachvili, J.N., Intermolecular and Surface Forces, Elsevier Publishing Company, 2003.
Meyer, E., Overney, R.M., Dransfeld, K., et al., Nanoscience Firction and Rheology on the Nanometer Scale, 1998.
Karniadakis, G.E., and Beskok, A., Micro Flows, Springer Verlag, 2001.

ME 274 (JAN) 3:0 Convective Heat Transfer
Energy Equation, Laminar external convection, Similarity solution, Integral method, Laminar internal convection, concept of full development Heat transfer in developing flow, Turbulent forced convection, Free convection from vertical surface, Rayleigh Benard convection.
J SRINIVASAN, PRADIP DUTTA and PRAMOD KUMAR
Prerequisite: ME 201 and ME 271
Kays, W. M. and Crawford, M. E., Convective Heat and Mass Transfer, TataMcGraw Hill 1980
Bejan, A., Convective Heat Transfer, John Wiley 1984

ME 275 (JAN) 3:0 Conduction and Radiation Heat Transfer
Thermal conductivity from kinetic theory, Fourier's law, differential equations for heat conduction, integral methods of analysis for transient conduction, lumped and partially lumped capacitance methods, boundary value problems and orthogonal functions, Fourier and Chebyshev series, solution using separation of variables, semiinfinite and infinite domains, Duhamel's theorem, Laplace transforms, Green's functions.
Black body radiation, radiative properties of nonblack surfaces, Kirchoff's Law, radiative exchange between different surfaces, configuration factor, radiative transfer in enclosures, radiative transfer in gases.
VINOD SRINIVASAN
Arpaci, V. S., Conduction Heat Transfer, AddisonWesley, 1996.
Hahn, D. W., and Ozisik, M. N., Heat Conduction, John Wiley and Sons, 2012.
Siegel, R., and Howell, J., Thermal Radiation Heat Transfer, Taylor and
Francis, 2002.
Modest, M.F., Radiative Heat Transfer, McGraw Hill 1993.

ME 282 (JAN) 3:0 Computational Heat Transfer and Fluid Flow
Mathematical description of fluid flow and heat transfer; conservation equations for mass, momentum, energy and chemical species, classification of partial differential equations, coordinate systems; discretization techniques using finite difference methods: Taylorseries and control volume formulations; Irregular geometries and bodyfitted coordinate system; applications to practical problems.
P DUTTA, R V RAVIKRISHNA and RATNESH SHUKLA
Prerequisite: ME 201, ME 271
Patankar, S. V., Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, 1980.
Anderson, D. A., Tannehill J. C. and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corporation, 1984.
H. K. Versteeg and W. Malalasekara, An Introduction to Computational Fluid Dynamics, Longman, 1995.

ME 283 (AUG) 3:0
Two Phase Flows and Boiling Heat Transfer
Characterization of two phase flow patterns (bubbly, slug, annular, mist, stratified, etc), homogeneous and heterogeneous flow models, suspension of particles in fluids, particulate fluidization, Bubble dynamics, RayleighPlesset Equation, Boiling and Condensation Heat Transfer, Homogeneous and heterogeneous nucleation, Hydrodynamic stability of stratified fluids, molecular theory of surface tension, contact line dynamics, dewetting pathways.
GAURAV TOMAR
Prerequisite: A course in fluid mechanics
Graham B Wallis, “One dimensional two phase flow”, McGraw Hill, 1969.
R T Knapp, J W Daily, F G Hammit, “Cavitation”, McGraw Hill, 1970.
R Clift, J R Grace and M E Weber, “Bubbles, drops and particles”, Dover, 1978.
P de Gennes, F BrochardWyart and D Quéré, “Capillarity and wetting phenomena”, Springer, 2004.
V P Carey, “LiquidVapor PhaseChange Phenomena”, Hemisphere Pub. Corp., 1992.

ME 284 (JAN) 3:0 Thermofluid dynamics of I C Engines
Review of classical thermodynamics, ideal cycles, real cycles, spark ignition and compression ignition engine fundamentals, engine performance parameters, engine combustion, normal and abnormal combustion, combustion chamber design parameters, pollutant formation, direct and indirect injection in diesel engines.
R V RAVIKRISHNA
Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw Hill Interational edition, 1988
Richard Stone, Introduction to Internal Combustion Engines, 2nd Edn., Macmillan Press, 1992.

ME 285 (AUG) 3:0 Turbomachine Theory
Introduction to turbomachines, mixing losses, review of vorticity, profile changes in contracting and expanding ducts. Brief review of diffusers, rotating coordinate system, total enthalpy, rothalpy, Euler turbine equation, velocity triangles. Specific speed and Cordier diagram,cascade aerodynamics. Elemental compressor stage, reaction work and flow coefficients. Equations of motion in axisymmetric flow, simple and extended radial equilibrium. Elemental axial turbine stage, radial and mixed flow machines, work done by Coriolis forces and by aerofoil action, the centrifugal compressor, vaned and vaneless diffusers.
J H ARAKERI and R N GOVARDHAN
Sabersky, R. H. and Acosta, A., Fluid Flow: A First Course in Fluid Mechanics,
Wilson, D. G., The Design of High Efficiency Turbomachinery and Gas Turbine, MIT Press, 1984.

ME 287 (JAN) 3:0 Refrigeration Engineering
Methods of refrigeration; vapour compression, refrigerationstandard and actual vapour compression cycles, multipresure systems, compressors, condensers, expansion devices, evaporators, refrigerants and refrigeration controls, component matching and system integration, vapour absorption refrigeration thermodynamics, single stage, dual stage and dual effect systems. Selection of working fluids, design of generators and absorbers; nonconventional refrigeration systems, vapour jet refrigeration.
G S V L NARASIMHAM
Stoecker, W. F., and Jones, J. W., Refrigeration and Air conditioning, Tata McGraw Hill Publishing Co. Ltd., 1983.
Therlkeld J. L., Thermal Environmental Engineering, Prentice Hall, NY, 1970.
ASHRAE Handbooks (SI Editions): Fundamentals (2009), Refrigeration (2010).

ME 288 (JAN) 3:0 Air Conditioning Engineering
Properties of air water mixtures, psychometric chart, air conditioning processes, enthalpy potential cooling and dehumidifying coils, cooling towers, heat transfer in buildings, comfort airconditioning, cooling load calculations, air conditioning system, design of air delivery systems, clean rooms and laminar flow equipment, air conditioning controls, noise and vibration control in airconditioned rooms.
G S V L NARASIMHAM
CroomeGole D. J., and Roberts, B. M., Airconditioning and Ventilation of buildings, Pergamon Press, Oxford, 1984.
Jones, W. P., Airconditioning Engineering, Edward Arnold Publishers Ltd., London, 1984.
Haines R. W., Control Systems for Heating, Ventilating and Air Conditioning, Van Nastrand Reinhold Co., NY, 1984.
ASHRAE Handbooks (SI Editions): HVAC Applications (2007), Systems and Equipment (2008), Fundamentals (2009).

ME 289 (AUG) 3:0 Principles of Solar Thermal Engineering
Introduction, solar radiation – fundamentals and fluid mechanics and heat transfer, methods of collection and thermal conversion, solar thermal energy storage, solar heating systems, solar refrigeration, solar thermal elective conversion, other applications.
G S V L NARASIMHAM
F. Kreith and J. F. Kreider, Principles of Solar Thermal Engineering, McGraw Hill, 1978
J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley & Sons, 1991
A. B. Meinel and F. P. Meinel, Applied Solar Energy, AddisonWesley, 1976

ME 293 (AUG) 3:0 Fracture Mechanics
Evaluation of fracture mechanics; elements of elasticity and plasticity; energetics of fracture, energy release rate and stress intensity factor, mixed mode fracture mechanics; dynamic fracture; nonlinear fracture mechanics, J integral, elasticplastic crack tip fields, J integral testing, J controlled crack growth and stability and engineering approach to plastic fracture.
K R Y SIMHA and R NARASIMHAN
Broek, D., Elementary Engineering Fracture Mechanics.
NorthHolland
M. F. Kanninen and C. H. Popular Advanced Fracture Mechanics, Oxford, 1985.
T. A. Anderson, Fracture Mechanics, Fundamentals and application, CRC Press, 1994.

ME 295 (JAN) 3:0 Geometric Modelling for Computer Aided Design
Representation of curves and surfacesparametric form, Bezier, B. Spline and NURBS, intersection of curves and surfaces, interpolation, representation of solidsgraph based models and point set models, Euler operators, boundary evaluation, computation of global properties of solids.
B GURUMOORTHY and DIBAKAR SEN
Rogers, D. F., and Adams J. A., Mathematical Elements of Computer Graphics, McGraw Hill, 1990.
Martti Mantyla, An Introduction to Solid Modelling, Computer Science Press, 1988.

ME 297 (AUG/JAN) 1:0 Departmental Seminar
The student is expected to attend and actively take part in ME Departmental Seminars for one semester during his/her stay.
Pass in the course is obtained by attendance of atleast 80%
Faculty Coordinator
(currently Dr. Vinod Srinivasan)

ME 298 (JAN) 3:0 Fluid Turbulence
Stability of fluid flows, transition to turbulence Introduction to turbulence, Reynolds averaged equations, statistical description of turbulence, vorticity dynamics, similarity methods, turbulent shear flows, Bernard convention, modelling and numerical methods.
J H ARAKERI
Prerequisite: Consent of Instructor

ME 299 Dissertation Project ME 299A (AUG) 0:06 Third Term of Study ME 299B (JAN) 0:21 Fourth Term of Study
The M.E. Project is aimed at training the students to analyse independently any problem posed to them. The project may be a purely analytical piece of work, a completely experimental one or a combination of both. In a few cases, the project can also involve a sophisticated design work. The project report is expected to show clarity of thought and expression, critical appreciation of the existing literature and analytical and/or experimental or design skill.

